Newswire (Published: Monday, July 6, 2020, Received: Monday, July 6, 2020, 5:32:47 PM CDT)

Word Count: 4397

2020 JUL 06 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Pharma Business Daily -- From Washington, D.C., NewsRx journalists report that a patent application by the inventors Rahimian, Javad (Irvine, CA); Momeni, Ahmad R. (Tustin, CA), filed on December 12, 2018, was made available online on June 18, 2020.

The patent’s assignee is Voxel Rad Ltd. (Irvine, California, United States).

News editors obtained the following quote from the background information supplied by the inventors: “Field of the Invention

“The present application relates to devices and methods for treating cancer using brachytherapy. In particular, the present application relates to devices and methods for treating cervical and/or uterine cancers in brachytherapy with an intracavitary brachytherapy applicator.

“Description of the Related Art

“’Brachy’ is derived from the Greek word ‘brachio’ meaning short range, and in reference to brachytherapy is defined as ‘Short Range Treatment with a Radioisotope.’ Five years after .sup.226Ra was discovered by Marie and Pierre Curie in Paris, Alexander Graham Bell suggested the implantation of radioactive sources directly into the tumors. That same year in 1903, two cases of facial basal cell carcinoma were treated, using .sup.226Ra surface molds in St. Petersburg.

“Brachytherapy typically offers low morbidity by delivering a high dose of ionizing radiation to the target volume, sparing surrounding healthy tissue with rapid dose fall off outside the implanted volume. Selective placement of the radioactive sources allow the dose distribution to be manipulated to match the target shape. Brachytherapy can be used in treating most areas of the body and can be used alone or in conjunction with External Beam Radiotherapy, Chemotherapy, and Surgery for management of cancer. HDR and LDR brachytherapy are well-established techniques with a long history of use in treatment of cervical and uterine cancers. The scientific principle behind this technology is that a highly radioactive source inside an afterloader passes through a transfer guide tube into an applicator implanted in the patient. The radioactive source is programmed to remain in its precise location for a given period to deliver radiation dose according to the prescription. This can be effective in treating cancers of the cervix and uterus.

“One known applicator for use in brachytherapy is the Fletcher-Suit-Delclos (FSD) afterloading intracavitary brachytherapy applicator for treatment of cervical and uterine cancers. Intracavitary brachytherapy procedure using FSD applicator for treatment of cervical and uterine cancers is tedious and time consuming. The procedure requires the patient to be consciously sedated or anesthetized as the procedure can be painful and lengthy with the complex design of the current available applicators requiring one to two nurses in assisting the radiation oncologist in implanting the applicator. The non-ideal geometry of the applicator placement, and the inadequate and occasionally painful placement of the vaginal packing retractor used to retract the bladder and the rectum from the plane of the implant, make the radiation dosimetry non-ideal, with high doses reaching the bladder or the rectum causing unwanted morbidities in some cases. Accordingly, in order to keep the radiation dose within the respective tolerance doses of the organs at risk, in some cases a user lowers the dose to the tumor; thus potentially causing the cancer to reoccur. Some optimization algorithms are currently used in the HDR treatment planning systems, however these cannot and do not adequately substitute or replace a geometrically optimum implant.

“In recent years many intracavitary applicators based on the FSD applicator concept have been designed, and used in the clinic, e.g., the Week, Williamson, Henschke and Mick applicators. The typical prescription requires 3 or 4 implants, one week apart, on the same patient. The traditional FSD applicator normally consists of 8-pieces assembled as the patient rests supine in the stirrup position. The current clinical procedure using FSD applicator is typically lengthy, painful, and often requires anesthetics, or conscious sedation. The problems outlined herein have made patients request alternative treatments such as surgery or use of Intensity Modulated Radiotherapy (IMRT). However, the intracavitary brachytherapy for treating cervical and uterine cancers should not be replaced with IMRT since intracavitary brachytherapy provides more conformal therapy, less integral dose, and superior sparing of the organs at risk.”

As a supplement to the background information on this patent application, NewsRx correspondents also obtained the inventors’ summary information for this patent application: “The present application relates to devices and methods for treating cervical and/or uterine cancers in brachytherapy with an intracavitary brachytherapy applicator to harness the benefits of brachytherapy in addition to easing and improving the implant procedure. Some embodiments comprise an advanced applicator system built for high and/or low dose rate (HDR and LDR) brachytherapy using a novel and innovative design with the aim of easier implantation of the applicator.

“According to some embodiments, an intracavitary brachytherapy applicator has a tandem and first and second inflatable ovoids. The tandem and ovoids are adapted to deliver an implant radiation dose for treatment of a patient. In some embodiments the applicator comprises one or more retractors. The ovoids are preferably coupled to an ovoid assembly to support the ovoids and to control the relative position of the ovoids. The tandem is preferably releasably coupled to the ovoid assembly and is adjustable relative to the ovoid assembly. The tandem preferably pivots and translates relative to the ovoid assembly. The tandem is preferably coupled to the ovoid assembly in a manner that limits or restricts rotation of the tandem about a longitudinal axis of the tandem. In some embodiments retractors are releasably coupled with the ovoid assembly. A first retractor can be positioned to retract the bladder of a patient during treatment and a second retractor can be positioned to retract the rectum of a patient during treatment. The retractors are preferably inflatable to at least partially retract the bladder and rectum from a treatment site. In some embodiments the tandem is preferably integrated with an endoscope to facilitate treatment. Embodiments of the present application provide advantages over the Fletcher-Suit-Delclos (FSD) afterloading intracavitary brachytherapy applicators.

“According to one embodiment, an applicator comprises a tandem catheter and comprises two colpostats arranged for introduction of radioactive sources for intracavitary brachytherapy. The tandem can be integrated with an endoscope in some embodiments that gives the capability of locating the cervical os and guiding the tandem into the uterine canal. The conventional FSD applicator colpostats are made of variously sized rigid caps. According to one embodiment, the applicator comprises two inflatable ovoid balloons with the capability of expansion to multiple sizes through iodinated saline. To replace inadequate retraction offered by currently used vaginal packing, two additional semi-cylindrical balloons are preferably attached to the ovoid assembly for retracting the bladder and rectum to lower the radiation dose received by these organs. The applicator preferably provides a geometrically optimum implant where the tandem is positioned to bisect the ovoids, the ovoids are inflated and positioned to the largest size appropriate to fit the anatomy of the patient, and the bladder and the rectum are pushed away from a plane of the implant by one or more retractors. In some embodiments the retractors push the bladder and rectum away from a plane of the implant by at least two centimeters. The applicator implements inflatable retractors for isolating the patient’s bladder and the rectum from radioactive sources, lowering the radiation dosage absorbed by these critical structures. An endoscope integrated with the tandem, in some embodiments, can provide advantages such as, for example, locating the cervical os more easily, limiting uterine perforations, sounding the uterus, and guiding the tandem through the uterine canal.

“According to one method, an embodiment of the applicator is provided having a tandem and a dual ovoid assembly. The tandem may have a fiberoptic endoscope integrated with it, so the cervical os can easily be found instead of the patient being blindly poked with a speculum placed in the vaginal canal. The tandem and the collapsed balloon dual ovoid assembly can easily be inserted as a single unit into the vaginal canal. The tandem may be guided by endoscope into the cervical os and uterine canal, where the ovoids may be placed in the cervical fornices. The ovoids can comprise two balloons that are inflated with desired volumes of iodinated saline. The ovoids can conform to the cervical tumor and can provide adaptive brachytherapy. The applicator can allow for the tandem and ovoids to be assembled and/or configured rapidly. Adjustments to the system can be completed outside of the patient, similar to a laproscopy procedure. Advantages of the applicator systems and methods of use include simplification of the use of the implant, utilizing fewer parts, adjustable ovoids fitting the patient fornices with comfort, and the inflatable retraction mechanism to separate and give adequate distance to the bladder and rectum. This will optimize the dose to the cervix and uterus, minimizing the dose to these critical structures.

“In some embodiments, advantages of applicator systems and methods may include easier and faster implantation. The applicator can cause less or no pain to the patient. The applicator can reduce complications to the patient. The applicator can have simple and integrated applicator parts. Methods of using the applicator and performing treatments can be reproducible. The applicator can provide improved implant geometry. The applicator can be configured to provide for manipulations to be done outside the vaginal and uterine canals, thus making the implant less invasive and geometrically advantageous. The applicator can provide improved radiation dosimetry and lower dose to bladder and rectum.

“According to one embodiment, a system for treating cervical and/or uterine cancers in brachytherapy with an intracavitary brachytherapy applicator comprises a tandem adapted for insertion into a cervix of a patient. The tandem comprises an endoscopic viewing element to facilitate treatment and one or more radiographic markers. An ovoid assembly comprises first and second adjustably inflatable ovoids and an ovoid support mechanism. The ovoid support mechanism is adapted to support the ovoids and to allow for user manipulation to control the relative position of the ovoids for insertion of the ovoids within the fornices of a patient. The first and second adjustably inflatable ovoids have a deflated configuration for insertion into a patient and one or more adjustably inflated configurations for positioning the ovoid assembly during treatment. The first and second ovoids each have one or more radiographic markers. The ovoid assembly comprises a tandem connector adapted to releasably and adjustably couple the tandem to the ovoid assembly to allow for pivotal and translational motion of the tandem relative to the ovoid assembly and to limit rotational movement of the tandem about a longitudinal axis of the tandem. First and second adjustably inflatable retractors are adapted to be releasably coupled to the ovoid assembly at first and second retractor connector portions. The first and second inflatable retractors have a deflated configuration for insertion into a patient and an adjustably inflated configuration for retraction of tissue during treatment. The first retractor is adapted to be positioned to retract the bladder of a patient during treatment and the second retractor is adapted to be positioned to retract the rectum of a patient during treatment. The tandem and the first and second inflatable ovoids are adapted to be coupled to a radioactive source to deliver an implant radiation dose suitable for cancer treatment at a cancerous cervical treatment site in a patient.

“According to another embodiment, a system for treating cervical and/or uterine cancers in brachytherapy with an intracavitary brachytherapy applicator comprises a tandem adapted for insertion into a cervix of a patient. An ovoid assembly comprises first and second inflatable ovoids and an ovoid support mechanism. The first and second inflatable ovoids are adapted for insertion within fornices of a patient. First and second retractors are adapted to be coupled to the ovoid assembly. The first retractor is adapted to be positioned to retract the bladder of a patient during treatment and the second retractor is adapted to be positioned to retract the rectum of a patient during treatment. The tandem and the first and second inflatable ovoids are adapted to be coupled to a radioactive source to deliver an implant radiation dose suitable for cancer treatment at a cancerous cervical treatment site in a patient.

“According to another aspect, a method of treating cervical and/or uterine cancers in brachytherapy with an intracavitary brachytherapy applicator comprises providing an intracavitary brachytherapy applicator having a tandem, an ovoid assembly comprising first and second inflatable ovoids and an ovoid support mechanism, and first and second retractors adapted to be coupled to the ovoid assembly. The tandem is inserted into a cervix of a patient. The first and second inflatable ovoids are inserted within fornices of a patient. The first and second retractors are inserted within a patient. The first and second inflatable ovoids are inflated within a patient. The bladder of a patient is retracted from a treatment site. The rectum of a patient is retracted from a treatment site. An implant radiation dose suitable for treatment is delivered at a treatment site.

“According to another aspect, a method of treating cervical and/or uterine cancers in brachytherapy with an intracavitary brachytherapy applicator can comprise one or more of the following steps. First and second retractors can be coupled to the ovoid assembly prior to insertion within a patient. The tandem and the first and second inflatable ovoids can be coupled to a radioactive source. Retracting the bladder can comprise inflating the first retractor. Retracting the rectum can comprise inflating the second retractor. The tandem can be coupled to the ovoid assembly. The tandem can be translated relative to the ovoid assembly. The tandem can be pivoted relative to the ovoid assembly. The tandem can comprise an endoscopic viewing element. A portion of the anatomy of the patient can be viewed with the viewing element upon insertion of the tandem within the patient. Rotational movement of the tandem about a longitudinal axis of the tandem can be limited by a connection between the tandem and ovoid assembly.

“According to some embodiments, a system for treating cervical and/or uterine cancers in brachytherapy with an intracavitary brachytherapy applicator comprises a tandem adapted for insertion into a cervix of a patient. An ovoid assembly comprises first and second inflatable ovoids and an ovoid support mechanism. The first and second inflatable ovoids are adapted for insertion within fornices of a patient. The ovoid support mechanism is adapted to support the ovoids and to allow for user manipulation to control the relative position of the ovoids for insertion of the ovoids within the fornices of a patient. The ovoid support mechanism comprises first and second handles wherein the handles are configured to allow for user manipulation to control the relative position of the ovoids using a coarse adjustment mechanism in a first configuration and using a fine adjustment mechanism in a second configuration. First and second retractors are adapted to be coupled to the ovoid assembly. The first retractor is adapted to be positioned to retract the bladder of a patient during treatment and the second retractor is adapted to be positioned to retract the rectum of a patient during treatment. The tandem and the first and second inflatable ovoids are adapted to be coupled to a radioactive source to deliver an implant radiation dose suitable for cancer treatment at a cancerous cervical treatment site in a patient.

“According to some embodiments, a system for treating cervical and/or uterine cancers in brachytherapy with an intracavitary brachytherapy applicator comprises a tandem adapted for insertion into a cervix of a patient. An ovoid assembly comprises first and second inflatable ovoids and an ovoid support mechanism. The first and second inflatable ovoids are adapted for insertion within fornices of a patient. The ovoid assembly comprises a tandem connector adapted to releasably and adjustably couple the tandem to the ovoid assembly. The ovoid assembly comprises a first configuration wherein one or more handles coupled to the tandem connector are in an open position and adapted for pivotal and translational movement of the tandem, and a second configuration wherein the one or more handles coupled to the tandem connector are in a closed position and adapted to clamp the tandem connector to limit movement of the tandem. First and second retractors are adapted to be coupled to the ovoid assembly. The first retractor is adapted to be positioned to retract the bladder of a patient during treatment and the second retractor is adapted to be positioned to retract the rectum of a patient during treatment. The tandem and the first and second inflatable ovoids are adapted to be coupled to a radioactive source to deliver an implant radiation dose suitable for cancer treatment at a cancerous cervical treatment site in a patient.

“According to some embodiments, a system for treating cervical and/or uterine cancers in brachytherapy with an intracavitary brachytherapy applicator, comprises a tandem adapted for insertion into a cervix of a patient. An ovoid assembly comprises first and second inflatable ovoids and an ovoid support mechanism. The first and second inflatable ovoids are adapted for insertion within fornices of a patient. First and second retractors are adapted to be coupled to the ovoid assembly. The first retractor is adapted to be positioned to retract the bladder of a patient during treatment and the second retractor is adapted to be positioned to retract the rectum of a patient during treatment. The first and second retractors are adapted to be releasably coupled to the ovoid assembly. The first and second retractors have attachment mechanisms comprising spring actuated lock mechanisms adapted to provide for adjustment of the position of the retractor and to provide for a snap fit connection with the ovoid assembly. The tandem and the first and second inflatable ovoids are adapted to be coupled to a radioactive source to deliver an implant radiation dose suitable for cancer treatment at a cancerous cervical treatment site in a patient.

“Still other aspects, features, and attendant advantages of the present application will become apparent to those skilled in the art from a reading of the following detailed description of embodiments constructed in accordance therewith, taken in conjunction with the accompanying drawings. Aspects, features, and attendant advantages of the present application provide improvements over known devices, systems and methods. Some devices, systems and methods related to brachytherapy are described in more detail in the following references, each of which is hereby incorporated by reference herein in its entirety. 1. J. Rahimian, Y. Qian, R. Kagan, Effects of Applicator Spatial Placement Variations on Cumulative Dose to Point A in the Treatment of Cervical Cancer with 3 HDR Intracavitary Brachytherapy Treatments. Medical Physics, Vol. 26, No. 6, p. 1142, 1999 (abstract); 2. Faiz M. Khan. The Physics of Radiation Therapy. Third Edition. Lippincott Williams & Wilkins Publishers, 2003; 3. H. K. Malhotra, J. S. Avadhani, S. F. deBoer, et. al. Duplicating a tandem and ovoids distribution with intensity modulated radiotherapy: a feasibility study. J. of Appl. Clin. Med. Phys. Vo. 8, No 3 (2007).”

The claims supplied by the inventors are:

“1. A system for treating cervical and/or uterine cancers in brachytherapy with an intracavitary brachytherapy applicator, comprising: a tandem assembly comprising a tandem and a tandem connector, the tandem adapted for insertion into a cervix of a patient and the tandem connector adapted to receive the tandem within an interior of the tandem connector along a longitudinal axis, the tandem connector comprising one or more grooves arranged along the longitudinal axis, the tandem comprising a multi-lumen shaft configured to receive an optical fiber therethrough; an ovoid assembly comprising first and second adjustably inflatable ovoids and an ovoid support mechanism, the ovoid assembly comprising first and second handles configured to support the respective first and second inflatable ovoids, wherein the handles are configured to allow for user manipulation to control the relative position of the ovoids using a unidirectional adjustment mechanism, each of the handles comprising a multi-lumen shaft, the handles adapted to allow for user manipulation to control the relative position of the ovoids for insertion of the ovoids within the fornices of a patient, the first and second adjustably inflatable ovoids having a deflated configuration for insertion into a patient and one or more adjustably inflated configurations for positioning the ovoid assembly during treatment, the ovoid support mechanism configured to establish a longitudinal position of the ovoid assembly relative to the tandem based on a coupling of the ovoid support mechanism with the one or more grooves; a first inflatable retractor adapted to be releasably coupled to the ovoid assembly, the first inflatable retractor having a deflated configuration for insertion into a patient and an adjustably inflated configuration for retraction of tissue during treatment; wherein the tandem and the first and second inflatable ovoids are adapted to be coupled to a radioactive source to deliver an implant radiation dose suitable for cancer treatment at a cancerous cervical and/or uterus treatment site in a patient.

“2. The system of claim 1, wherein the optical fiber is configured for coupling to a camera to facilitate positioning of the tandem.

“3. The system of claim 1, wherein multi-lumen shaft of the tandem comprises at least three lumens.

“4. The system of claim 1, wherein multi-lumen shaft of the tandem is configured to link an ultrasound transducer therethrough.

“5. A system for treating cervical and/or uterine cancers, the system comprising: a tandem assembly comprising a tandem and a tandem connector, the tandem adapted for insertion into a cervix of a patient and the tandem connector adapted to receive the tandem within an interior of the tandem connector along a longitudinal axis, the tandem connector comprising one or more grooves arranged along the longitudinal axis; an ovoid assembly comprising first and second adjustably inflatable ovoids and an ovoid support mechanism, wherein the ovoid assembly comprises first and second handles configured to support the respective first and second inflatable ovoids, wherein the handles are configured to allow for user manipulation to control the relative position of the ovoids, wherein the handles are adapted to allow for user manipulation to control the relative position of the ovoids for insertion of the ovoids within the fornices of a patient, the first and second adjustably inflatable ovoids having a deflated configuration for insertion into a patient and one or more adjustably inflated configurations for positioning the ovoid assembly during treatment; first and second adjustably inflatable retractors adapted to be releasably coupled to the ovoid assembly, the first and second inflatable retractors having a deflated configuration for insertion into a patient and an adjustably inflated configuration for retraction of tissue during treatment; wherein the tandem and the first and second inflatable ovoids are adapted to be coupled to a radioactive source to deliver an implant radiation dose suitable for cancer treatment at a cancerous cervical and/or uterus treatment site in a patient.

“6. The system of claim 5, wherein, the tandem comprises a multi-lumen shaft configured to receive an optical fiber therethrough.

“7. The system of claim 6, wherein the optical fiber is configured for coupling to a camera to facilitate positioning of the tandem.

“8. The system of claim 6, wherein the multi-lumen shaft of the tandem comprises at least three lumens.

“9. The system of claim 6, wherein the multi-lumen shaft of the tandem is configured to link an ultrasound transducer therethrough.

“10. The system of claim 5, wherein the ovoid assembly comprises a unidirectional adjustment mechanism configured to allow modification of an angular position of the first and second inflatable ovoids relative to the tandem assembly.

“11. The system of claim 5, wherein the ovoid support mechanism is configured to establish a longitudinal position of the ovoid assembly relative to the tandem based on a coupling of the ovoid support mechanism with the one or more grooves.

“12. The system of claim 5, wherein each of the handles comprises a multi-lumen shaft configured to deliver radiation therapy therethrough.

“13. A brachytherapy applicator comprising: a tandem assembly comprising a tandem and a tandem connector, the tandem adapted for insertion into a cervix of a patient and the tandem connector adapted to receive the tandem within an interior of the tandem connector along a longitudinal axis, the tandem comprising a multi-lumen shaft; an ovoid assembly comprising first and second adjustably inflatable ovoids and an ovoid support mechanism, wherein the ovoid assembly comprises first and second handles configured to support the respective first and second inflatable ovoids, wherein the handles are configured to allow for user manipulation to control the relative position of the ovoids, wherein the handles are adapted to allow for user manipulation to control the relative position of the ovoids for insertion of the ovoids within the fornices of a patient, the first and second adjustably inflatable ovoids having a deflated configuration for insertion into a patient and one or more adjustably inflated configurations for positioning the ovoid assembly during treatment; first and second adjustably inflatable retractors adapted to be releasably coupled to the ovoid assembly, the first and second inflatable retractors having a deflated configuration for insertion into a patient and an adjustably inflated configuration for retraction of tissue during treatment; wherein the tandem and the first and second inflatable ovoids are adapted to be coupled to a radioactive source to deliver an implant radiation dose suitable for cancer treatment at a cancerous cervical treatment site in a patient.

“14. The system of claim 13, wherein the tandem connector comprises one or more grooves arranged along the longitudinal axis.

“15. The system of claim 13, wherein the tandem comprises an endoscopic viewing element to facilitate positioning of the tandem.

“16. The system of claim 13, the tandem connector adapted to limit rotational movement of the tandem about a longitudinal axis of the tandem.

“17. The system of claim 13, wherein the ovoid assembly comprises a toothed adjustment mechanism configured to allow modification of an angular position of the first and second inflatable ovoids relative to the tandem assembly.

“18. The system of claim 14, wherein the toothed adjustment mechanism of the ovoid assembly comprises a unidirectional adjustment mechanism.”

For additional information on this patent application, see: Rahimian, Javad; Momeni, Ahmad R. Systems And Methods For Treating Cancer Using Brachytherapy. Filed December 12, 2018 and posted June 18, 2020. Patent URL: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220200187769%22.PGNR.&OS=DN/20200187769&RS=DN/20200187769

(Our reports deliver fact-based news of research and discoveries from around the world.)

Companies

Momeni Inc.

Industries

Healthcare
      Medical Devices
            Medical Treatment Devices
                  Radiosurgery Devices
Manufacturing
      Medical Device Manufacturing
            Medical Devices
                  Medical Treatment Devices
                        Radiosurgery Devices

Places

Eastern Europe
North America
Western Europe
France
Russia
United States
Americas
Europe
California
District of Columbia
Paris
Saint Petersburg
Irvine
Tustin
Washington
D.C.

Subjects

Science and Technology
      Scientific Research
Business and Commerce
      Intellectual Property
            Patents and Trademarks
Health and Wellness
      Medical Conditions and Diseases
            Cancer
                  Prostate Cancer
            Men's Health Issues
                  Prostate Cancer
      Medical Specialties and Practices
            Radiology
      Treatments and Therapies
Structured Content
      Structured Science and Technology Content
            Patent Applications